

Towards the Virtual Fatigue Test

Ben Dixon & Madeleine Burchill Defence Science and Technology

Outline

- Roles of DST Aerospace Division in Defence
- Digital trends in the Aerospace Domain
- What are the benefits of a virtual fatigue test?
- DST's pathway to a virtual fatigue test ASSIST
 - identify and publish sources of error in fatigue predictions
 - partner in S&T research to reduce errors
- Progress
 - blind prediction challenges
 - current research directions

Defence Science Technology (DST):

Leads Australian Defence and National Security S&T

Aerospace Division: Provides support and solutions to enhance the operational effectiveness, performance, survivability, availability and safety of ADF aerospace capabilities

* * * * * * * * * * * * * * *

DST Roles in the Aerospace Domain

Defence Operations

Acquisition Projects

Sustainment

Strategic Research

Cost of ownership – US Navy perspective

Total Ownership Cost

Office of Naval Research: Naval S&T Strategic Plan (2011):

- **Total Ownership Cost** is one of 9 focus areas
- <u>Drivers</u>: decreasing budgets, increasing cost of manpower, materials, labour
- Vision: insert technology to reduce acquisition, lifecycle and sustainment costs

Innovative Sustainment

- F/A-18 A/B (IFOSTP \$700M, FINAL \$443M, HOWSAT \$10M)
- P-3C (SLAP \$432M)
- C-130J (FSFT re-wing?)

Test based – BUT also innovative analysis methodologies

F/A-18 A/B: IFOSTP

P-3C: SLAP

Digital trends - within Aerospace Domain

U.S. DoD

benefits of digital twins are clear to: designers, manufacturers, regulators and operators.

Boeing

https://theaircurrent.com/aircraft-development/tracing-theorigins-of-boeings-diamond-from-apollo-to-nma/ accessed: 05/08/2019 US Department of Defense, Digital Engineering Strategy, June 2018

https://www.airbus-sv.com/projects/9 accessed: 05/08/2019

Validating Airframe Structural Strength

To bring new aircraft designs into service:

- airframe strength and durability needs to be demonstrated
- via a series of qualification tests and analyses
- and a full scale fatigue test (FSFT):

time (10 +years) engineering effort ('000s hours) costs (\$50M+)

this includes new materials or advanced methods (e.g. additive manufacturing)

F35 Structural Design Development and Verification Presenter: Mr Robert Ellis - Lockheed Martin Co ASIP Conference, Phoenix, AZ, USA, Nov 26-29 2018

Advancing structural test and simulation, why?

To reduce delays in

- fielding of innovative designs or modifications
- benefiting from advances in manufacturing and material technologies
- responding to meet challenges from emerging technologies

Joint Strike Fighter Airframe Durability and Damage Tolerance Certification D. Ball and D. Norwood, AIAA 2006-1867

ASSIST - Background

 Two years ago Research Leader Aircraft Structures Dr. Albert Wong proposed TITANS (<u>Transglobal</u> Integrated Tests and Analyses Network for Structures).

Collaborative program to help progress to virtual fatigue test.

Now ASSIST:
 Advancing Structural
 Simulation to drive
 Innovative
 Sustainment
 Technologies

A. K. Wong, 2017, Blueprint TITANS: A Roadmap towards the Virtual Fatigue Test through a Collaborative International Effort, In: 29th ICAF Symposium, Nagoya, Japan: 7-9 June 2017

IDEA!

ASSIST - DST aims

- To encourage the building of a sovereign collaborative network, that can <u>support Defence</u> in responding to technological changes and providing sustainment options to reduce the cost of ownership and/or increase platform availability.
- To provide information and foster discussions within the Engineering community on S&T that can advance structural test and simulation outcomes.
- Developing efficient pathways for innovative platform sustainment solutions to be transitioned into Defence capability options.

Photographer: CPL David Gibbs

Copyright: © Commonwealth of Australia, Department of Defence

What is ASSIST?

- Built around Airframe Prediction
 Challenges predict fatigue lives for realistic loads and structures.
- Collaboration All of the Aerospace community are welcome to participate.
- Detailed forensic examination of results to drive improvement in predictive methods.

Main et al., 2019, Lessons from a Fatigue Prediction Challenge for an Aircraft Wing Shear Post. Int. J. Fat. 123

The Challenges

Real-world aircraft structure problems - First 3 based on problems relevant to Defence

2. Helicopter spectrum truncation

3. Long cracks in transport aircraft

Fighter wing root shear tie (completed)

The Challenges

- Focus on specific parts of life prediction
- Detailed forensic examination of results:
 - Test Results + Additional data (e.g. strain gauges, Finite Element Models (FEM), Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Quantitative fractography (QF)
 - Collaborative review at online community
 - Identify most critical parts of the process.
 - Identify limitations and areas for improvement of predictive capabilities
 - Provide focus for future research

ASSIST Community

Hosted on SharePoint: https://govteams.gov.au

To join email: <u>ASSIST2019@dst.defence.gov.au</u>

YOU CAN:

- ✓ Participate in the blind challenges
- ✓ Participate in/comment on the post-challenge reviews
- ✓ Post your own challenges
- ✓ Suggest improvements to ASSIST challenges/processes (e.g. Additional data to collect during testing)

Aiding the pathway to a virtual fatigue test

- Operators want no surprises → impact to availability
- Full Scale Fatigue/Durability Tests still give surprises
- Need to establish, with confidence, analytical identification of all hot spots & the error bands for modern methodologies

Growing ASSIST database of challenges can:

- 1. Benchmark and improve our ability to ID hot spots.
- 2. Establish error bands
- 3. Help reduce error bands

Aiding the pathway to a virtual fatigue test

- Operators want no surprises → impact to availability
- Full Scale Fatigue/Durability Tests still give surprises
- Need to establish, with confidence, analytical identification of all hot spots & the error bands for modern methodologies

Growing ASSIST database of challenges can:

- Benchmark and improve our ability to ID hot spots.
- 2. Establish error bands
- 3. Help improve error bands

Medium term benefits

- ✓ Improved outcomes from design and certification (i.e. test interpretation / correlation & Individual Aircraft Tracking – IAT)
- ✓ More efficient Full Scale Fatigue/Durability Tests (not so much downtime!)

✓ Streamlined certification (for analytical clearances).

F

ASSIST in Action

Challenge 1: Fighter aircraft wing root shear tie post.

Detailed description of Challenge at:

Main et al., 2019, Lessons from a Fatigue Prediction Challenge for an Aircraft Wing Shear Post. Int. J. Fat.; 123

Three challenge participants

- 1. RUAG AFGROW (Swiss F/A-18 sustainment)
- 2. DST easigro
- DST FASTRAN
- Participants given geometry, manoeuvre + buffet spectrum, material properties, FEM, strain data from critical radius
- All solutions based on Linear Elastic Fracture Mechanics (LEFM).
- Main differences: crack growth data/models, crack geometry and local stress conditions (β models)
- Blind predictions compared to 10 test results (5 test specimens)
- Participants bring unique strengths

RUAG AFGROW – Finite Element Modelling (FEM)

Energy Release Rate (ERR) – 38 crack steps in NX NASTRAN FEM.

Software Code_Aster used to simulate 3D crack growth through component (39 steps).

DST – Fatigue crack growth prediction research

- DST-developed software easigro (White, 2019, A guide to the program easigro for generating growth models, DST-Group-TR-3566)
- easigro can use many fatigue crack growth models, some DST developed.
- DST collects crack growth measurements for very small cracks to overcome limitations of traditional data sets.
- easigro can optimise crack growth models to match spectrum fatigue results.

Hartman-Schjive equation	White equation
$\frac{da}{dN} = D \left[\frac{(\Delta K - \Delta K_{thr})}{\sqrt{(1 - K_{max})/A}} \right]^{\alpha}$	$\frac{da}{dN}$ $= \exp\left[a_w \log^3(\Delta K_e) - b_w \log^2(\Delta K_e) + c_w \log(\Delta K_e) - d_w\right]$ $\times \exp\left[\frac{1}{(K_{1C}(1-R) - \Delta K)^{e_w}}\right]$ where: $\Delta K_e = \frac{\Delta K}{(1-R)^{f_w}}$

Results

- All predictions within ~30% average life
- Nearly all conservative.
- All best predictions used cg models based on small crack measurements
- Optimised crack growth models especially good.
- QF data allows an examination of where models have limitations.

Green points are QF measurements – each point = crack depth after x blocks of spectrum loading

Forensic Examination of Results

- All results benchmarked vs. back-calculated stress conditions local to crack (β) .
- Another set of simple coupons run: QF of both sets of coupons enabled benchmarking of results

- Can see at what crack depths β models have problems
- RUAG modelling best.

Lessons Learned

Because the crack was small for much of its fatigue life (i.e. < 1mm for more than 2/3 of fatigue life) it was very important to :

- Accurately estimate the crack shape and the local stress conditions when the crack was small
- 2. Use <u>crack growth models</u> applicable to the growth of small cracks.
- Periodically summarise and publish Lessons Learned.

Burchill et al., 2017, *Improving fatigue life predictions with a crack growth rate material model based on small crack growth & legacy data*, 17th AAC, Melbourne.

Prediction Challenges - progress

- 3 challenges completed
- Military Transport Aircraft & Helicopter Truncation challenge still to be reviewed
- Entries from 8 organisations:
 - RUAG
 - Mississippi State University (FASTRAN)
 - DST Group
 - Southwest Research Institute (SwRI NASGRO)
 - University of Adelaide
 - Monash University
 - United States Air Force (USAF)
 - National Research Laboratories (NLR, Netherlands)
- ASSIST Community has 58 members including DST, academia, industry and international partners
- Next challenge: Stiffened panel in Military Transport Aircraft

DST research directions

- High fidelity component scanning: transition to FEM.
- Incorporation of build quality into models
- DIC and TSA to calibrate models
- Improve fatigue prediction models (e.g. machine learning + atomic modelling)
- Improve full-scale test rates

modelling

SharePoint site: https://www.govteams.gov.au
To join email: ASSIST2019@dst.defence.gov.au

